
AD-Ri46 476 INTERNATIONAL LOGIC PROGRAMM1ING CONFERENCE (2ND) HELD i/l
AT UPPSALA SWEDEN ON 2-6 JULY 19840U) OFFICE OF NAVAL
RESEARCH LONDON (ENGLAND) J F BLACK(BURN 27 JUL 84

UNCLASSIFIED ONRL-C-4-84 F/G 9/2 NL

Lu _

S% ...q

.%-
-. 4o

w> W= a

-1*

".'0

%S.

1.2 14 1.

- Q

5.3,

U--

~MICROCOPY RESOLUTION TEST CHARTNATIONAL BUREAU OF STANDARDS-1963-A

111.,

A. C-4-84

OFFICE

9.-

BR NC 27JL18

II

OFFICEIF NAVAL __ __ __ __ __ _
SECOND INTERNATIONAL LOGIC PROGRAMMING CONFERENCEIESEAICI __ __ __ __ __ __

J.F. BLACKBURN

BRANCH 27 JUL 1984

LONOON
ENGLN

T DT1C
SELECTE

S..OCT 0 41984

c..~ UNITE WAT OF IM O
This document in issued primarily for the info mtth of U.S. Government

scientific personnel and contractors. It is not considered part of the scien-
tific literature and bhould not be cited as such.

.APPROVED FOR PUBLIC RXZASS; DISTMIDUTION UNWIUITED

V8
10 02 0O 0

UNCLASSIFIED
-.ECUC, ITY CLASSIFICATION OF THIS PAGE (When Data Entec@4_REPOT 0¢U ,HTAIOH AGEREAD INSTRUCTIONS

REPORT DOCUMENTATION PAGE BEFORE COMPLETING FORM
I REPORT NUMBER A .GOVTACCESSION NO 3. RECIPIENT'$ CATALOG NUMBER

4. TITLE (and Subti te). TYPE F REPORT & PERIOD COVERED

Second International Logic Progrming Conference

Conference 6. PERFORMING ORG. REPORT NUMBER

7. AUTHOR(&) 5. CONTRACT OR GRANT NUMlUEU(s)

J.F. Blackburn

9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT. PROJECT, TASK
AREA & WORK UNIT NUMBERS

US Office of Naval Research Branch Office London
Box 39
FPO NY 09510 n

II CONTROLLING OFFICE NAME AND ADDRESS It. REPORT DATE

27 July 1984
1S. NUMBER OF PAGES

14. MONITORING AGENCY NAME & ADDRESS(II dllierent from CantmllhW Office) IS. SECURITY CLASS. (of this report)

UNCLASSIFIED
If.. EC ASIFICATION/GOWNGRADING

IS. DISTIBUTION STATEMENT (at this Repo.)

Approved for public release; distribution uuhimited.

.. cces sion Fr

17. OISTRIBUTION STATEMENT (of the abtt entered I ,. it- ,--s hem * s GR&I -o
DTIC TAB 0
Un:]2!-cuIncE d 0

Justification
IS. SUPPLEMENTARY NOTES JU'. Byi

t DiStrihution/_

Availnbility Codes4t
E. KEYWORDS (Continua on .oeve* sIe if n@ceoe and .do#It by bloc 1 ia Dist SpecialComputer programing

Programing languages
Logic programing
Sweden

20. AUSTRACT (Continue on revers de it ne, ooey tE Iaentito Iy bleak vmde")

r The Second International Logic Programing Conference was held at Uppeala
University, Sweden, from 2 through 6 July 1984. Presentations at the conferI
ence suggest that although logic programing is in the very early stages of
exploitation, it is already becoming a useful tool..,

DD ~I AN73 1473 EDITION OF I NOV 61IS OuSLETE
S/N 01 02-LF-014-6601 IE URT11TIN

SitCURITY CLASOliCA¢TION OF THIS PAGE (Plhon ,rot~o Enteed)

77. 7. 77 7- 7 V .7 -%

SECOND INTERNATIONAL LOGIC PROGRAMMING 1. What Is logic programing? He
CONFERENCE called it a compromise between theorem

The Second International Logic Pro- proving and programing.
gramming Conference was devoted to dis- 2. What is the relation of logic
cussiona of logic programing, a rels- programing to other forms of program-
tively new concept In computer program- ning such as functional programing and
ming. The conference was held from 2 object-oriented programing? And how
through 6 July at Uppsala University, should logic programing relate to
Sweden; there were 228 participants from concepts such as relational databases?
22 countries. For copies of the proceed- 3. What problems need to be solved
ings, write to: Department of Computer before logic programing "comes into its
Science, Uppsala University, Upmail, Box ovn"? As an example, he mentioned the
2059, S-750 02 Uppsala, Sweden. problem of sorting. In a conventional

Background imperative program a pointer can be made

The first computer programming lan- to point to the next item in a list when
guage was the binary language of the an item is removed, but at present ingmage Prolog all the items up to the one
machine, called machine code. The nextstored. This
step was to develop symbolic rather than
numerical machine code, which was called results In a waste of time and memory

Assembler language. After that came a space.

series of higher level languages, Application of Logic Programming I
including Fortran, Cobol, Basic, PLI,
Apl, Algol, and more recently Pascal and $inpoe
Ada. In all of these the programmer The first speaker in this category,
must describe exactly how a result is to Skigeyuki Takagi (Japan) described the
be computed. Such programs are largely overall design of Simpos (Sequential
made up of commands which specify Inference Machine Programing and
actions to be performed, and are called Operating System). The first major
imperative programming languages. product of the Japanese Fifth Generation

Logic programming languages are Computer Systems Project, the personal
more descriptive than imperative pro- sequential inference machine (PSI or 1)
gramming languages, but they also have is under development. Takagi described
an imperative component. Such programs the design of Simpos, the YVs program-
are primarily descriptive definitions of ming and operating system; its major
a set of relations or functions to be language, ESP (extended self-contained
computed. The execution of such a pro- Prolog); and the development tools.
gram involves finding an output corre- The major research theme of 7 is to
sponding to a given input, develop a logic-programing-based pro-

The first day of the conference was graming environment, including system
devoted mainly to a tutorial on logic program. The basic design philosophy

A programming, given by Keith Clark of of Simpos is to build a super personal
4 Imperial College, London. This included computer with database features and with

a description of the logic programming Japanese natural-language processing
language Prolog, the language Parlog under a logic-programming-based system
(parallel programming in logic), and an design.
introduction to expert systems. It is expected that by March 1985

The conference proper began on such an operating/programing system
Tuesday morning. A welcoming address by with a good human interface will be in
S.-A. Tarnlund (Sweden) was followed by operation.
an invited address by R. Kowalski (UK),
who spoke on problems of logic program- Prolog as a Toot for Optimizing Prolog
ming. He discussed three main problems Unities
but without offering specific solutions Martin Nilsson (Sweden) discussed a
to them: unification procedure as a central part

. ft. £r

=II

. of every Prolog implementation. He respect to a first-order theory consist-
stated that a Prolog interpreter spends ing of the program plus the equality
roughly half of its time unifying data theory.
structures. Consequently it is desir- A brief account of Prolog II was
able to speed up unification as such as given, followed by introduction of a
possible. He discussed generation of a general proof procedure which underlies

." speed-optimal unifier program and a com- both Prolog and Prolog II. Prolog was
parison between the best and worst uni- shown to be this general procedure plus
fiers. A method for finding speed- the equality theory. Finally, Prolog TI
optimal unifiers was given. The uni- was shown to be essentially the general
fiers are generated by a Prolog program procedure plus a more complicated

h which is a declarative partial descrip- equality theory.
tion of the unifier. The method has

" been applied to an experimental inter- A Compaison of Two Logic Programing
preter, for which some data were given. Languages
Drwng Trees ad Teir Equaions in Szots Miklos (Hungary) compared
Proog Prolog and a new language called Lobo.

After defining Lobo in detail, Miklos
A detailed description of how to

A deaile desripion f ho to analyzed two examples dealing with pla-
compute efficiently a drawing of Prolog nayoer robles-ie., w a-tree wit th smales numer f noes ar covering problems--i.e., how a rec-
trees with the smallest number of nodes tangle can be covered by given elements.
was given by Jean Francois Pique Both languages were shown to be able to
(France). It is done using a system of realize the same algorithms. The two
equations described in "Prolog and
Infinite Trees" (Colmerauer, 1982). languages are equivalent in the sense
Examples were given of finite and inf- that both are suitable for defining allExamplres wr givfen dofine apartial recursive functions. In that

sense, both can be considered universal.
Foundations of Logic Programs Lobo is nearer to traditional lan-

guages than is Prolog. Lobo does not

A Logical Reconstruction of ProZog II use pattern matching, it can be compiled
In a paper given Jointly, M.H. Van easily, and it is able to use tradi-

Emden (Canada) and J.W. Lloyd, (Austra- tional features of programing.
Ila) took the view that a logic program-
ming language is one in which a program Computation Tree& and Transformations of
is a first-order theory and computed Logic PzWOg ne
answers are correct with respect to this Although they were not presentV
theory. They then posed the question of Olga Stepankova and Petr Stepanek
whether Prolog II (Colmersuer, 1982) is (Czechoslovakia) sent in a paper intro-
a logic programming language and, if so, ducing a new concept of computation
in what sense it is. Prolog II is trees of logic program. The paper
regarded in Colmerauer's account as a described three types of transformations

system for rewriting possibly infinite that improve the structure of logic pro-
trees. Unification is replaced by gram. Two natural measures of complex-
transformations on sets of equations. ity are suggested by computation trees:

Prolog rI lacks occur check, but the number of nodes called by recursion
Coluerauer considers this lack an and the maximum number of and/or altera-
essential feature of the language, tions on a branch. Stepankova and

0 accounting for it in his tree-rewriting Stepanek showed that every logic program
N ; model. Van Emden and Lloyd answered the can be transformed to a program comput-question of whether Prolog II Is a logic ing the ease function, the computation

Ax programing language by making explicit tree of which has at most one called
9. Prolog II's theory of equality. Having node and at most two alterations on

done that they demonstrated that answers every branch. Thus both measures of
computed by Prolog II are correct with complexity collapse.

2s

.

Applications of Logic Prograuming II are a generalization of Fernando

Semantic Interpretation for the EpistZe Pereira's extraposition grammars where

System rules have the form:

Michael cCord (US) described
Epistle, a natural-language processing al• gap (Xl)• a2, gap (x2)•...,
system being developed at IBM Research. gap (xn.)• an-e,--B gap (Xl),
Its application is to text-critiquing,
with criticism of grammar and style in gap (x2),..., gap (xn.);
documents. The Epistle grammar has
broad coverage and is purely syntactic. that is, the gaps are rewritten in their
McCord described a semantic interpre- sequential order in the right-most

tation component called Sem, written in positions of the rewriting rule.

Prolog, which will be useful in further Examples were given in which extraposi-
developments for the system. Sem is tion gramars are not adequate, and

based in part on previous work by alternative implementations of gapping
McCord; it translates surface parses to grammars in logic were presented.

logical forms in a single stage, in
which there is interleaving of the Logic Programing Languages
processes of sense selection, slot Eager and Lazy &nmeatione in Concur-
filling, other types of modification, rent Prom og
movement of nodes, and exercising of Hideki Hirakawa (Japan) discussed
semantic constraints. Furthermore, the the possibility of using logic program-
constraints used involve inference with ming languages for AND-parallel and OR-
world knowledge. parallel executions. Concurrent Prolog,

On Gapping Graiuo.are designed by E. Shapiro, introduces an
A discussion of gapping grammars AND-parallelism and a limited OR-paral-was presented as a Joint paper by lelism, i.e., a don't-care nondetermi-

asVeronica Dahl and Harvey Abramson nism. The other aspect of OR-parallel(Canada). and Har h a mson execution--i.e., don't-know nondetermi-
na A gapping gramr has rewit- nsm--is formalized as an "eager enumer-

rules of the form: ate" operation on a set expression.

al' gap (xl), a2, gap (x2)...• Hirakawa described a computational model

an-l• gap (Xn.1) aa--=O which provides the eager enumerate func-
•gation to concurrent Prolog and showed its

el & VU U VT implementation in concurrent Prolog
itself. He also showed that a lazy

.g (enumerate function can be implemented.G -= gap (Xl), gap (x2),,,.gap (xn.)1 easily by introducing a bounded-buffer

communication technique to the eager

x, E V* enumerator (Amamiya, 1984).

noorporatg Mitable Arras Into Logic
0 e v* Ug0Wmdng

Logical terms are the only compound
where VT and VN are the terminal and data structures in logic programing
nonterminal vocabularies of the gapping languages such as Prolog. Terms are
grammar (CC). Intuitively, a GG rule sufficiently general so that no other
allows one to deal with unspecified data structures are needed. Restricted
strings of terminal symbols called gaps, uses of term correspond to the bits,
represented by X1, X2,...Xn-l, in a character strings, arrays, and records
given context of specified terminals and of other programing languages. How-
nonterminals, represented by a, a2 ..., ever, the computational overhead of
a. and then to distribute them in the using a very general data structure in
right-hand side 8 in any order. GOC specialized situations can be very high.

3

Side effects cannot be performed on has a subsort facility that greatly
logical terms, and the alternative of increases its expressive power. Since
constructing new terms which differ Goguen and Meseguer's approach to gener-
slightly from the old can be very ic modules and abstract data types
costly. relies on general results from the theo-

Lars-Henrik Eriksson (Sweden) sug- ries of specification languages and
gested a way to alleviate the above rewrite rules, it applies to ordinary
shortcomings without losing logical unsorted Prolog and should also apply to
clarity and purity. He and his col- other logic programming languages such
league have introduced into LM-Prolog, a as concurrent Prolog.

- Prolog dialect running on Lisp machines,
predicates for creating and manipulating Logic Programing Methodology I
arrays. These predicates could have
been written as Horn clauses without the nfod/moZd Transformation of Logic
use of any primitives. They are imple- T uf ol t or i
mented in terms of physical arrays and The unfold/fold transformation
"virtual arrays" in a manner that is method is formulated for logic programs

transparent to the user. For some uses so that the transformation always pre-
of these predicates, it is possible for serves the equivalence of programs as
a compiler to produce code-performing defined by the least-model semantics.

a copilr t prducecod-peforing Hisao Tamaki (Japan) gave a detailed
array references and updates that are as proao the asic g yve Soe
good as those produced by compilers for proof for the basic system. Some
traditional programming languages. augmenting rules were also introduced,trd" pand the conditions for their safe appli-

Equality, Types, Modules, and Generics cation within the unfold/fold system

for Logic were clarified. There are useful

The original plan for logic pro- special cases of those rules in which

gramming called for the use of predicate application is always safe.

logic as a programming language. Prolog Bounded-Horizon, Success-Complete Re-
only partially realizes this plan, since atriction of Inference Programs
it has many features with no correspond- Michel Sintzoff (Belgium) dealt
Ing feature in first-order predicate with the control of search in logic
logic. J.A. Goguen and J. Meseguer (US) programing (Horn-clause inference) by
suggested a system called Eqlog, which the addition of restrictive predicates

* combines the technology of Prolog (its to rules so as to cut off all blind
efficient implementation with unifica- alleys without losing possible results.
tion and backtracking) with functional Criteria were proposed to ensure that
programming (in an efficient first-order additional premises allow results to be

- rewrite-rule implementation) to yield established without trial and error.
facilities that exceed those of Prolog These criteria require neither the
plus those of functional programming. introduction of special well-orderings
Logical variables can be included in nor the induction of limits of predi-
equations, giving the ability to find cates. They take into account structur-

** . general solutions to equations over al properties of bounded-length compo-
user-defined abstract data types. This sitions of the original clauses and
new power is provided in a uniform and consequently are only sufficient.
rigorous way by using "narrowing" from
the theory of rewrite rules to get a An Efficient Bug-Location Algorithm
complete implementation of equality. It D.A. Plaisted (US) presented an
can be seen as a special kind of resolu- efficient algorithm for locating bugs
tion. Also, user-definable abstract (errors) in Prolog. The algorithm,
data types and generic (i.e., parame- based on the method of Shapiro (1983)
trized) modules become available with a can be applied to any high-level pro-
rigorous logical foundation. Eqlog also graming language. The method is optimal

4

% %.

to within a constant factor for space, should be retained while making this
time, and number of queries to the user. approximation were discussed, and a
This significantly improves the perform- class of architectures was developed
ance of Shapiro's method, which is not that approximates the ideal. The
optimal for space or time and for which parameters of this class were defined
the number of queries depends on the and criteria for evaluating them were
branching factor of the computation. given.
Since no current programming environment
uses this method, it should be a signif- An Architecture for Parallel Logic
icant aid to programmers in debugging Languages
software. An outline of an architecture to

support the parallel execution of logic
Architecture and Hardware for Logic languages was presented by J.A. Crammoud
Programaing (UK). The implementation of a partic-

OR-Parallelism on Applicative Architec- ular language, Parlog, was discussed.

Special attention was given to its

few years ago, Gary Lindstrom don't-care nondeterminism which allows
both AND- and OR-parallelism and returns(US) introduced an abstract method for only one solution.

OR-parallel logic program execution--a The mainf
The main features described were

method oriented toward applicative the control structure and the binding
architectures. Central to this method environment. The proposed control
is pipelined processing of streams of
substitution data objects. At this structure uses processes that build an
meeting oh addresed wo im tati AND/OR tree tailored for guarded clan
meeting he addressed two implementation sea. For the binding environment a
issues associated with the above ap- unification algorithm was introduced
proach: (1) the efficient representa- which solves the problems of multiple
tion of substitution data objects, and(2 apaalelunfiatonalorth occurrences of an instance of a variable(2) a parallel unification algorithm in guard clauses.

compatible with this representation.

The approach to the first issue was A Highly Parallel ProZog Interpreter
use of a compact vectorized representa- Based on the Generalized Data-FZow Model
tion permitting indexed access of local Peter Kacsuk (Hungary) discussed a
variable bindings. Results on the second generalized data-flow model and its
issue make use of a formulation of uni- applications for constructing a highly
fication as a write-once database update parallel Prolog interpreter. The paral-
problem, which can be efficiently imple- lel Prolog interpreter is suitable for
mented by a particular combination of
applicative and imperative architectural using advantages of OR- and AND-paral-
features. lelism. Transformation of the AND/OR

tree into a data-flow graph based on the
A CZass of Architectures for a Prolog generalized data-flow model was shown.
Machine Operator types needed for parallel

L.V. Kale (US) presented a view of evaluation of Prolog programs were
the computation of Prolog programs that explained in detail.
is suitable for expressing parallelism.
He and his colleagues developed an Application of Logic Programing III
idealized architecture which allows for
exploiting most types of parallelisms. A Prolog System for the Verification of
The architecture is based on an effl- Concurrent Processes Against Temporal
cdent broadcast link. The idealized Logic Specifications
architecture requires a lot of re- E. Giovannetti (Italy) described a
sources; therefore, various ways of system, implemented in Prolog, for the
mapping it onto practical topologies verification of dynamic properties of
were sought. Types of parallelism that concurrent processes. Description of

5

-. -- ''V ~ 4.%* .%=.- * % .V ...

concurrent processes with asynchronous are, however, cases when two program
communication can be checked against clauses in a program are similar (except
dynamic behavior specifications express- for some small difference), so that they
ed by temporal logic formulas, under the can be transformed into each other.
hypothesis that the whole concurrent Anna-Lena Johansson (Sweden) discussed
system can be modeled by a nondetermi- ways to avoid constructing both the
nistic finite automation. derivations, which can be quite lengthy.

Implementation for the basic compo- She further discussed how, after con-
nents of the verifier was shown. Includ- structing a derivation of a program
ed were the model checkers for the clause, one can answer the question of
chosen temporal logics, the symbolic whether there is an analogous program
simplifier, and the dynamic semantics of clause. If there is, one needs to
the description language. determine its appearance as well as the

substitution on which to base an appli-
Logical Levels ofPoblem Solving cation of the substitution rule.

A paper presented by Leon Sterling
(Israel) demonstrated how clear, effi- A ModeZ Theory of Logic Prograving
cient problem-solving programs can be MethodoZogy
written in logic programming. The key H. Sun (China) gave an axiom for a
point is the consideration of levels new version of the first-order language
involved, both in the problem solving for mechanical theorem proving. It is
Itself and in the underlying logic, called subgoal deduction language (SDL)
Sterling identified three levels of and is used as a meta language for
knowledge necessary for intelligent specification and derivation of logic
problem solving: a level of domain programs as well as for representation
knowledge, a level of methods and of the knowledge necessary for program

strategies, and a planning level. The reasoning. A diversified relation sys-
approach suggested relates these levels tem is defined as the semantic interpre-

* to the distinction between object and tation of SDL and logic programs. An
meta languages. Two classes of programs example of an automatic derivation of a
were presented. First, single-level logic program from its specifications
problem solvers were introduced; these was given.
are at the methods level and constitute
a meta language of the problem domain. Foundations of Logic Programming II
Second, flexible multi-level problem
solvers were outlined which can be built A Unified Treatment of Resolution Strat-
as extensions of the single-level egies for Logic Programs

* programs. D.A. Wolfram (Australia) discussed
a unified treatment of soundness and

- Logic Programming Methodology II weak and strong completeness of various
logic-program resolution strategies with

Using Synrietry for the Derivation of respect to success and failure. The
Logic Progrwns treatment is generalized and consider-

In a programming calculus the form- ably simplified. This is made possible
al development of a Horn-clause logic by using the full power of the unifica-

•0 program implies a derivation of program tion theorem, which allows a reduction
t-w. clauses from a set of definitions, of to a simple canonical case. The results
16, data structures and computable func- can then be established in a straight-

tions, given in full predicate logic. A forward manner. He also indicated how
logic program is composed of a set of the unification theorem can be used to
program clauses. Each program clause is simplify the proof of the completeness
derived separately from the definitions, of the negation as failure rule. Final-
The derivations differ mainly in struc- ly, he noted that the treatment applies
ture for the different clauses. There to other clausal forms.

2 6

%,. . ..- % J'. *'~.'* *

Applications of Logic Programming IV Steve Gregory (UK). The Parlog language
features both OR- and AND-parallelism.

Fame: A ProZog Program That Solves It was designed to simulate a system by
Problems in Combinatorice a network of parallel processes communi-

Yoav Shoham (US) reported on Fame, cating by messages. Real time is
a Prolog program that solves problems in replaced by a central simulated clock.

- combinatorics. He gave examples of the The Parlog language is based on Horn
kind of problems that the program is clauses, and it differs from Prolog in
able to solve: two important respects: don't-care non-

determinism and the use of modes. These
r1. Give a combinatorial argument features make possible the concurrent

for the following equalities: C(N-I, R) evaluation of conjoined relation calls--
. - (R+I)C(N, R+1) - (N-R)C(N, R). i.e., AND-parallelism, with stream co-

2. Explain why the number of ways munication between the calls. Each
to put N indistinct objects into K relation call is evaluated as a process;
distinct boxes is C(N+K+I, K-i). shared variables act as one-way communi-

3. How many ways are there to put cation channels along which messages
N indistinct objects into K distinct are sent by incremental binding to
boxes when every box receives at least lists.
one of the objects? How does this
problem relate to the one before? Conclusion

4. In an arrangement of 11 consec- The number of people attending this
utive seats, how many ways are there to Second International Logic Programming
select four seats so that no two are Conference is a clear indication of the
adjacent? Explain your answer. influence the meeting has achieved.

5. Give a combinatorial argument Logic programming is in the very early
that Sigma (I from 0 to N, C(N, I) **2) stages of exploitation, but it is
- C(2N, N). already becoming a useful tool at this

early stage. Its use in programing
An advantage in using Prolog for expert systems has shown that simple

solving such problems is its concise- expert systems can solve practical
n ness. One main reason for the concise- problems. Several good examples given
ness of the program is the logic pro- during the conference were the system
graming aspect of Prolog. for computer crash analysis described by

Littleford; the Fame system for solving
. An Expert System for Computer Crash problems in combinatorics, described by
- Analysis Shoham; and Parlog for parallel

Alan Littleford (US) described a logic programing, described by
large expert system that has been con- Gregory.
structed using Prolog, which diagnoses A highly significant development is
computer-system crashes in a customer/ the combining of logic programming and
field engineering environment, functional programing, as described by

He described the construction of Goguen and Meseguer. The combining of
the expert system and compared its the two systems in Eqlog yields capabil-
implementation to some other similar ities that exceed those of Prolog and
schemes. Even though Prolog is a functional programming combined; one
production-rule system, Littleford found gets the logic capability of Prolog and
it necessary to add an extra level of the ability to handle numerical problems
interpretation to meet some of the needs through functional programming.
of the application. Logic programing has great poten-

tial and has been given greatly added
Parog for Discrete Event Simulation impetus by the Japanese decision to make

A parallel-logic programming their Tifth Generation computers logic
language called Parlog was described by machines.

7

AS,~ % -

References Colmerauer, A.. "Prolog and Infinite
• Amamiya, M., and R. Hasegaw-. "Dataflow Trees," Logio PMoW -&nng, APIC Stud-

Computing and Eager and Lazy Evalua- ies in Data Processing No. 16 (Lou-
tions," New Generation Computig, 2 dont Academic Press, 1982), 231-251.
(1984), 105-129.

'-I'

..

I..;

. "

-1

.'. .

%. " ,

~~DA

w144.

4*-I1

I%

''Ir

C111

:. - .1* *4)

S2LI

~~.*.*.:K****..*~~~~~~~~~~~~~~ MI,-*.."> '\..................... . ' % - . *

